Impedance Source Matrix Converters and Control
Impedance Source Matrix Converters and Control
Ge, Baoming; Abu-Rub, Haitham; Blaabjerg, Frede; Li, Xiao; Liu, Yushan
John Wiley & Sons Inc
12/2024
272
Dura
9781119906896
15 a 20 dias
Preface xiii
Acknowledgment xiv
1 Background 1
1.1 Power Electronics Converter Topologies and Applications in Modern Power Systems 1
1.1.1 Introduction 1
1.1.2 Matrix Converter 5
1.1.2.1 Direct Matrix Converter 5
1.1.2.2 Indirect Matrix Converter 5
1.1.2.3 Power Switches of MCs 6
1.1.2.4 Research Status of MCs 9
1.2 ZS/QZS Converters 11
1.3 Advantages of ZS/QZS MCs Compared to Existing Technology 12
1.4 Current Status and Future Trends 15
1.5 Contents Overview 16
References 17
2 Z-Source/Quasi-Z-Source Direct Matrix Converter 27
2.1 Introduction 27
2.2 Topology and Operating Principle 29
2.2.1 Topologies 29
2.2.2 Operation and Modeling 32
2.2.2.1 Basic Model 32
2.2.2.2 Buck/Boost Conversion Mode 34
2.3 Modulation Methods 35
2.3.1 PWM Method for Traditional mc 35
2.3.2 PWM Method for the Simplified Voltage-Fed ZS-MC 35
2.3.3 Voltage Gain of the Simplified Voltage-Fed ZS-MC 37
2.3.4 Implementation of Control Method 42
2.4 Simulation and Experimental Results 44
2.5 Conclusion 49
References 49
3 Z-Source/Quasi-Z-Source Indirect Matrix Converter (Non-All SiC Solution) 53
3.1 Introduction 53
3.2 Topologies and Operating Principle 55
3.2.1 Topologies 55
3.2.2 Operating Principle 58
3.2.3 Parameters Design of the QZS Network 61
3.3 Modulation Methods 62
3.4 Simulation Results and Applications 65
3.4.1 Applications 65
3.4.2 Simulation Results 68
3.5 Conclusion 71
References 72
4 Z-Source/Quasi-Z-Source Indirect Matrix Converter (All SiC Solution) 75
4.1 Introduction 75
4.2 Topologies and Operating Principle 75
4.2.1 Topologies 75
4.2.2 Operating Principle 78
4.2.3 Parameters Design of the QZS-Network 81
4.3 Modulation Methods 82
4.3.1 Conventional Space Vector Modulation Method 82
4.3.1.1 Rectifier-stage SVM 82
4.3.1.2 Inverter-stage SVM 85
4.3.1.3 Coordination of dual SVM 87
4.3.2 Modulation Methods with Common-mode Voltage Reduction 88
4.3.2.1 Common-mode Voltage 89
4.3.2.2 Common-Mode Voltage Reduction Method I 92
4.3.2.3 Common-mode Voltage Reduction Method II 94
4.4 Simulation and Experimental Results 97
4.5 Conclusion 101
References 102
5 Comparison of Typical Z-Source/Quasi-Z-Source Matrix Converters 105
5.1 Introduction 105
5.2 Operation Analysis of Novel QZS-IMC 109
5.2.1 Discussed Topology 109
5.2.2 Buck Operation 109
5.2.3 Boost Operation 109
5.2.3.1 Non-shoot-through state 110
5.2.3.2 Shoot-through state 111
5.3 Small-Signal Modeling of QZS-IMC 111
5.4 Voltage Gain Investigation 112
5.4.1 Modeling IMC 112
5.4.2 Voltage Gain Analysis 115
5.5 QZS Network's Filtering Function Investigation 116
5.5.1 Circuit Large Signal Analysis 116
5.5.2 S-Domain Small-Signal Analysis 117
5.6 Parameters Design of QZS Network 118
5.6.1 Switching Frequency Ripple Limit 118
5.6.2 Power Factor and Cut-off Frequency Requirements 120
5.7 Simulation and Experimental Results 121
5.7.1 Investigation of Modeling 122
5.7.2 Voltage Gain Verification 124
5.7.3 Filtering Function Verification 124
5.8 Conclusion 128
References 128
6 Z-Source/Quasi-Z-Source 3-1-Phase Matrix Converters 131
6.1 Introduction 131
6.2 Topology and Modulation of the 3-1-Phase QZS-MC 132
6.2.1 Topology 132
6.2.2 Equivalent Circuits 132
6.2.3 Modulation Method 134
6.3 Modeling and Analysis of Three-Phase-to-Single-Phase qZS-MC 135
6.3.1 Model of Three-Phase-to-Single-Phase qZS-MC 135
6.3.2 Voltage Gain Analysis 138
6.4 Simulation and Experimental Tests 139
6.4.1 Verification of Modeling 140
6.4.2 Verification of Voltage Gain 141
6.5 Conclusion 142
References 142
7 Z-Source/Quasi-Z-Source 3-1-Phase Matrix Converters With Low-Frequency Power Compensation 145
7.1 Introduction 145
7.2 The 3-1-Phase QZS-MC with Input Low-Frequency Harmonic Elimination 146
7.3 Existed Harmonic Components and Required Impedance Parameters Without Ripple Compensation 147
7.4 Predictive Control of Ripple Compensation Branch 149
7.4.1 Current Model of Compensation Branch 149
7.4.2 Power Model of Compensation Capacitor 150
7.4.3 2? Power of Single-Phase Side 150
7.4.4 Cost Function 150
7.5 Simulation and Experimental Tests 150
7.6 Conclusion 155
A Appendix 157
References 159
8 Model Predictive Control of LC Filter-Integrated Quasi-Z-Source Indirect Matrix Converter 161
8.1 Introduction 161
8.2 LC Filter-Integrated QZS-IMC 162
8.3 Principle of Model Predictive Control 163
8.4 Proposed MPC for LC Filter-Integrated QZS-IMC 164
8.4.1 Modeling of IMC 165
8.4.2 Predictive Models 166
8.4.2.1 Predictive Model of AC Load Current 166
8.4.2.2 Predictive Model of QZS Network 166
8.4.2.3 Cost Function Evaluation and Switching States Selection 167
8.5 Simulation and Experimental Results 169
8.6 Conclusion 173
References 174
9 Optimum Boost Control of LC Filter-Integrated Quasi-Z-Source Indirect Matrix Converter 177
9.1 Introduction 177
9.2 Gain Model and Modulation of QZS-IMC System 179
9.2.1 Derivation and Analysis of Gain Model 179
9.2.2 Modulation Method 180
9.3 Multi-Constraints Optimization and Operation Control for QZS-IMC 182
9.3.1 Constrained Optimization Method 182
9.3.2 Optimal Function Curve of QZS-IMC 183
9.3.2.1 Pre-constrained Condition 183
9.3.2.2 Constrained Condition When D is Nonzero 184
9.3.2.3 Optimal Function at D ? 0 184
9.3.2.4 Full-range Optimal Operation Curve 185
9.3.3 Optimal Operation Control of QZS-IMC 185
9.3.3.1 Main Flow Chart 187
9.3.3.2 Flow Chart of Boost Mode 187
9.3.3.3 Flow Chart of Buck Mode 187
9.4 Simulation and Experimental Verifications 188
9.4.1 Verification of Optimal Operation Control 188
9.4.1.1 Case 1: Boost Mode From Line-A to Line-B 189
9.4.1.2 Case 2: Buck Mode From Line-B to Line-A 194
9.4.2 Power Loss Comparison 202
9.4.2.1 Parameters 202
9.4.2.2 Measured Powers and Losses in Experiments 203
9.4.2.3 Analysis and Summary 203
9.5 Conclusion 203
References 204
10 Applications in Motor Drives 207
10.1 Introduction 207
10.2 LC Filter-Integrated QZS-IMC 208
10.3 QZS-IMC Induction Motor Drive Control 210
10.3.1 Dual Closed-Loop Vector Control of Induction Motor 210
10.3.2 Comprehensive Control Algorithm 211
10.3.3 Pulse-Width Modulation 214
10.4 Simulation and Experimental Verifications 215
10.4.1 Input Voltage Sag and Load Change 215
10.4.2 Rotor Speed Change at Input Voltage Sags 219
10.4.3 Power Loss Analysis 222
10.5 Conclusions 224
References 225
11 Future Trends 227
11.1 General Expectation 227
11.2 Dual-Three-Level QZS-IMC-Based Power Drive System 229
11.2.1 Topology 229
11.2.2 Operating Principle 231
11.2.3 Modulation Method 232
11.3 Motor Control Strategy 236
11.3.1 General Description 236
11.3.2 Control Variables 237
11.3.3 Boost Controller Design 238
11.4 Experimental Verifications 240
11.5 Discussion 245
11.6 Conclusion 247
References 247
Index 251
Preface xiii
Acknowledgment xiv
1 Background 1
1.1 Power Electronics Converter Topologies and Applications in Modern Power Systems 1
1.1.1 Introduction 1
1.1.2 Matrix Converter 5
1.1.2.1 Direct Matrix Converter 5
1.1.2.2 Indirect Matrix Converter 5
1.1.2.3 Power Switches of MCs 6
1.1.2.4 Research Status of MCs 9
1.2 ZS/QZS Converters 11
1.3 Advantages of ZS/QZS MCs Compared to Existing Technology 12
1.4 Current Status and Future Trends 15
1.5 Contents Overview 16
References 17
2 Z-Source/Quasi-Z-Source Direct Matrix Converter 27
2.1 Introduction 27
2.2 Topology and Operating Principle 29
2.2.1 Topologies 29
2.2.2 Operation and Modeling 32
2.2.2.1 Basic Model 32
2.2.2.2 Buck/Boost Conversion Mode 34
2.3 Modulation Methods 35
2.3.1 PWM Method for Traditional mc 35
2.3.2 PWM Method for the Simplified Voltage-Fed ZS-MC 35
2.3.3 Voltage Gain of the Simplified Voltage-Fed ZS-MC 37
2.3.4 Implementation of Control Method 42
2.4 Simulation and Experimental Results 44
2.5 Conclusion 49
References 49
3 Z-Source/Quasi-Z-Source Indirect Matrix Converter (Non-All SiC Solution) 53
3.1 Introduction 53
3.2 Topologies and Operating Principle 55
3.2.1 Topologies 55
3.2.2 Operating Principle 58
3.2.3 Parameters Design of the QZS Network 61
3.3 Modulation Methods 62
3.4 Simulation Results and Applications 65
3.4.1 Applications 65
3.4.2 Simulation Results 68
3.5 Conclusion 71
References 72
4 Z-Source/Quasi-Z-Source Indirect Matrix Converter (All SiC Solution) 75
4.1 Introduction 75
4.2 Topologies and Operating Principle 75
4.2.1 Topologies 75
4.2.2 Operating Principle 78
4.2.3 Parameters Design of the QZS-Network 81
4.3 Modulation Methods 82
4.3.1 Conventional Space Vector Modulation Method 82
4.3.1.1 Rectifier-stage SVM 82
4.3.1.2 Inverter-stage SVM 85
4.3.1.3 Coordination of dual SVM 87
4.3.2 Modulation Methods with Common-mode Voltage Reduction 88
4.3.2.1 Common-mode Voltage 89
4.3.2.2 Common-Mode Voltage Reduction Method I 92
4.3.2.3 Common-mode Voltage Reduction Method II 94
4.4 Simulation and Experimental Results 97
4.5 Conclusion 101
References 102
5 Comparison of Typical Z-Source/Quasi-Z-Source Matrix Converters 105
5.1 Introduction 105
5.2 Operation Analysis of Novel QZS-IMC 109
5.2.1 Discussed Topology 109
5.2.2 Buck Operation 109
5.2.3 Boost Operation 109
5.2.3.1 Non-shoot-through state 110
5.2.3.2 Shoot-through state 111
5.3 Small-Signal Modeling of QZS-IMC 111
5.4 Voltage Gain Investigation 112
5.4.1 Modeling IMC 112
5.4.2 Voltage Gain Analysis 115
5.5 QZS Network's Filtering Function Investigation 116
5.5.1 Circuit Large Signal Analysis 116
5.5.2 S-Domain Small-Signal Analysis 117
5.6 Parameters Design of QZS Network 118
5.6.1 Switching Frequency Ripple Limit 118
5.6.2 Power Factor and Cut-off Frequency Requirements 120
5.7 Simulation and Experimental Results 121
5.7.1 Investigation of Modeling 122
5.7.2 Voltage Gain Verification 124
5.7.3 Filtering Function Verification 124
5.8 Conclusion 128
References 128
6 Z-Source/Quasi-Z-Source 3-1-Phase Matrix Converters 131
6.1 Introduction 131
6.2 Topology and Modulation of the 3-1-Phase QZS-MC 132
6.2.1 Topology 132
6.2.2 Equivalent Circuits 132
6.2.3 Modulation Method 134
6.3 Modeling and Analysis of Three-Phase-to-Single-Phase qZS-MC 135
6.3.1 Model of Three-Phase-to-Single-Phase qZS-MC 135
6.3.2 Voltage Gain Analysis 138
6.4 Simulation and Experimental Tests 139
6.4.1 Verification of Modeling 140
6.4.2 Verification of Voltage Gain 141
6.5 Conclusion 142
References 142
7 Z-Source/Quasi-Z-Source 3-1-Phase Matrix Converters With Low-Frequency Power Compensation 145
7.1 Introduction 145
7.2 The 3-1-Phase QZS-MC with Input Low-Frequency Harmonic Elimination 146
7.3 Existed Harmonic Components and Required Impedance Parameters Without Ripple Compensation 147
7.4 Predictive Control of Ripple Compensation Branch 149
7.4.1 Current Model of Compensation Branch 149
7.4.2 Power Model of Compensation Capacitor 150
7.4.3 2? Power of Single-Phase Side 150
7.4.4 Cost Function 150
7.5 Simulation and Experimental Tests 150
7.6 Conclusion 155
A Appendix 157
References 159
8 Model Predictive Control of LC Filter-Integrated Quasi-Z-Source Indirect Matrix Converter 161
8.1 Introduction 161
8.2 LC Filter-Integrated QZS-IMC 162
8.3 Principle of Model Predictive Control 163
8.4 Proposed MPC for LC Filter-Integrated QZS-IMC 164
8.4.1 Modeling of IMC 165
8.4.2 Predictive Models 166
8.4.2.1 Predictive Model of AC Load Current 166
8.4.2.2 Predictive Model of QZS Network 166
8.4.2.3 Cost Function Evaluation and Switching States Selection 167
8.5 Simulation and Experimental Results 169
8.6 Conclusion 173
References 174
9 Optimum Boost Control of LC Filter-Integrated Quasi-Z-Source Indirect Matrix Converter 177
9.1 Introduction 177
9.2 Gain Model and Modulation of QZS-IMC System 179
9.2.1 Derivation and Analysis of Gain Model 179
9.2.2 Modulation Method 180
9.3 Multi-Constraints Optimization and Operation Control for QZS-IMC 182
9.3.1 Constrained Optimization Method 182
9.3.2 Optimal Function Curve of QZS-IMC 183
9.3.2.1 Pre-constrained Condition 183
9.3.2.2 Constrained Condition When D is Nonzero 184
9.3.2.3 Optimal Function at D ? 0 184
9.3.2.4 Full-range Optimal Operation Curve 185
9.3.3 Optimal Operation Control of QZS-IMC 185
9.3.3.1 Main Flow Chart 187
9.3.3.2 Flow Chart of Boost Mode 187
9.3.3.3 Flow Chart of Buck Mode 187
9.4 Simulation and Experimental Verifications 188
9.4.1 Verification of Optimal Operation Control 188
9.4.1.1 Case 1: Boost Mode From Line-A to Line-B 189
9.4.1.2 Case 2: Buck Mode From Line-B to Line-A 194
9.4.2 Power Loss Comparison 202
9.4.2.1 Parameters 202
9.4.2.2 Measured Powers and Losses in Experiments 203
9.4.2.3 Analysis and Summary 203
9.5 Conclusion 203
References 204
10 Applications in Motor Drives 207
10.1 Introduction 207
10.2 LC Filter-Integrated QZS-IMC 208
10.3 QZS-IMC Induction Motor Drive Control 210
10.3.1 Dual Closed-Loop Vector Control of Induction Motor 210
10.3.2 Comprehensive Control Algorithm 211
10.3.3 Pulse-Width Modulation 214
10.4 Simulation and Experimental Verifications 215
10.4.1 Input Voltage Sag and Load Change 215
10.4.2 Rotor Speed Change at Input Voltage Sags 219
10.4.3 Power Loss Analysis 222
10.5 Conclusions 224
References 225
11 Future Trends 227
11.1 General Expectation 227
11.2 Dual-Three-Level QZS-IMC-Based Power Drive System 229
11.2.1 Topology 229
11.2.2 Operating Principle 231
11.2.3 Modulation Method 232
11.3 Motor Control Strategy 236
11.3.1 General Description 236
11.3.2 Control Variables 237
11.3.3 Boost Controller Design 238
11.4 Experimental Verifications 240
11.5 Discussion 245
11.6 Conclusion 247
References 247
Index 251